Sensitivity of downward longwave surface radiation to moisture and cloud changes in a highelevation region
نویسندگان
چکیده
[1] Several studies have suggested enhanced rates of warming in high-elevation regions since the latter half of the twentieth century. One of the potential reasons why enhanced rates of warming might occur at high elevations is the nonlinear relationship between downward longwave radiation (DLR) and specific humidity (q). Using ground-based observations at a high-elevation site in southwestern Colorado and coincident satellite-borne cloud retrievals, the sensitivity of DLR to changes in q and cloud properties is examined and quantified using a neural network method. It is also used to explore how the sensitivity of DLR to q (dDLR/dq) is affected by cloud properties. When binned by season, dDLR/dq is maximum in winter and minimum in summer for both clear and cloudy skies. However, the cloudy-sky sensitivities are smaller, primarily because (1) for both clear and cloudy skies dDLR/dq is proportional to 1/q, for q> 0.5 g kg , and (2) the seasonal values of q are on average larger in the cloudy-sky cases than in clear-sky cases. For a given value of q, dDLR/dq is slightly reduced in the presence of clouds and this reduction increases as q increases. In addition, DLR is found to be more sensitive to changes in cloud fraction when cloud fraction is large. In the limit of overcast skies, DLR sensitivity to optical thickness decreases as clouds become more opaque. These results are based on only one high-elevation site, so the conclusions here need to be tested at other high-elevation locations.
منابع مشابه
Physics of U.S. Surface Temperature Response to ENSO
To elucidate physical processes responsible for the response of U.S. surface temperatures to El Niño– Southern Oscillation (ENSO), the surface energy balance is diagnosed from observations, with emphasis on the role of clouds, water vapor, and land surface properties associated with snow cover and soil moisture. Results for the winter season (December–February) indicate that U.S. surface temper...
متن کاملPeriodicity of Downward Longwave Radiation at an Equatorial Location
A good understanding of the diverse mechanisms in the atmosphere is required in modelling the climate. In this study, the diurnal and seasonal patterns of all-sky downward longwave radiation (DLR) at Ilorin (8o 32l N, 4o 34l E), Nigeria were investigated alongside relative humidity (RH) and temperature. The average diurnal pattern of DLR gives an arc that begins by increasing gradually with som...
متن کاملDetection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: comparing multi-model simulations with observations
Observations show that the surface diurnal temperature range (DTR) has decreased since 1950s over most global land areas due to a smaller warming in maximum temperatures (Tmax) than in minimum temperatures (Tmin). This paper analyzes the trends and variability in Tmax, Tmin, and DTR over land in observations and 48 simulations from 12 global coupled atmosphere-ocean general circulation models f...
متن کاملRadiative Energy Budget in the Cloudy and Hazy Arctic
A radiation model is constructed that includes radiative interactions with atmospheric gases, as well as parameterized treatments of scattering and absorption/emission by cloud droplets and haze particles. A unified treatment of solar and terrestrial radiation is obtained by using identical cloud and haze parameterization procedure for the shortwave and longwave region. The influence of the rel...
متن کاملSurface Cloud Forcing in the East Pacific Stratus Deck/Cold Tongue/ITCZ Complex*
Data from the Eastern Pacific Investigation of Climate Studies (EPIC) mooring array are used to evaluate the annual cycle of surface cloud forcing in the far eastern Pacific stratus cloud deck/cold tongue/ intertropical convergence zone complex. Data include downwelling surface solar and longwave radiation from 10 EPIC-enhanced Tropical Atmosphere Ocean (TAO) moorings from 8°S, 95°W to 12°N, 95...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013